Introduction	System Analysis	Performance Evaluation	Empirical Validation	Conclusion	Thank you
		000000	000000		

Empirical Validation of Energy-Neutral Operation on Wearable Devices by MISO Beamforming of IEEE 802.11ac

Wen-Chan Shih, Pai H. Chou, Wen-Tsuen Chen

Nov. 6, 2014

Introduction 00	System Analysis	Performance Evaluation	Empirical Validation	Conclusion O	Thank you 0
Outline					

- Introduction
- System Analysis
- Performance Evaluation
- Empirical Validation
- Conclusion

Introduction ●0	System Analysis 00	Performance Evaluation	Empirical Validation	Conclusion O	Thank you 0
Introdu	ction				

- Existing energy harvesting focus on duty cycling harvesting and multiple antennas
- Space and power division harvesting can concentrate wireless power in one direction
- The MISO beamforming of IEEE 802.11ac represents a promising solution to increase wireless energy harvesting

Principle

The MISO beamforming of IEEE 802.11ac improves energy harvesting for wearable devices to achieve energy-neutral operation

Introduction 00	System Analysis ●○	Performance Evaluation	Empirical Validation	Conclusion O	Thank you O
Availab	lo Distance	oc of the Node			

- Available power for harvesting
 - Available power by the SISO

$$P_{r_{x}}^{ant} = P_{t_{x}}^{ant} A_{gain}^{ary} G_{t_{x}}^{ant} G_{r_{x}}^{ant} \left(\frac{\lambda}{4 \pi D}\right)^{2} \frac{1}{\chi_{fad}^{sha}}, \qquad (1)$$

where the array gain A_{gain}^{ary} is given by

$$A_{gain}^{ary} = 10 \log_{10} (N_{tx}). \tag{2}$$

where N_{tx} is the number of transmit antennas

Available power by the MISO

$$P_{r_{x},en}^{ant} = P_{t_{x}}^{ant} B_{gain}^{bf} A_{gain}^{ary} G_{t_{x}}^{ant} G_{r_{x}}^{ant} \left(\frac{\lambda}{4\pi D}\right)^{2} \frac{1}{\chi_{fad}^{sha}}, \quad (3)$$

where B_{gain}^{bf} is given by

$$B_{gain}^{bf} = 2 \pi / \theta_{bf}^{ml}, \qquad (4)$$

where θ_{bf}^{ml} is the main lobe degree of the beamforming

Introduction 00	System Analysis ○●	Performance Evaluation	Empirical Validation	Conclusion O	Thank you 0
Availab	le Distance	es of the Node			

• Average power consumption of the node

$$P_{node}^{avg} = V_{node} I_{node}^{avg}, \tag{5}$$

where I_{node}^{avg} is the average current of the node that is given by

$$I_{node}^{avg} = I_{node}^{active} R_s + I_{node}^{idle} (1 - R_s).$$
 (6)

- Improvements of harvesting power and available distances
 - Harvesting power improvement P^{har}_{imp} from Eqn. (1) and (3) is given by

$$P_{imp}^{har} = P_{r_{X}-en}^{ant}(Freq, D) - P_{r_{X}}^{ant}(Freq, D).$$
(7)

• Distance improvement *D_{imp}* is given by

$$D_{imp} = D_{en} \left(P_{ava}, Freq \right) - D \left(P_{ava}, Freq \right).$$
(8)

Introduction 00	System Analysis	Performance Evaluation	Empirical Validation	Conclusion O	Thank you 0
Perform	nance Evalı	uation			

• Available distances of the node

Table: Simulation parameters for the available distances and improvements

Description	Parameter	Value	Units
No. of APs	N _{ap}	1	set
No. of transmit antennas	N _{tx}	4	set
Frequency of AP	F _{ap}	2.4,5	GHz
Transmit power of AP	P _{ap}	23.45	dBm
Antenna gain of AP	G _{tx}	6	dBi
Antenna gain of node	G _{rx}	5	dBi
No. of node	N _n	1	set
Idle current of node	l ^{idle} node	0.4	μA
Active current of node	I ^{active} node	19.6	mA
Voltage of node	V _{node}	2.2	V

Introduction 00	System Analysis 00	Performance Evaluation	Empirical Validation	Conclusion 0	Thank you 0
Perform	nance Evalı	uation			

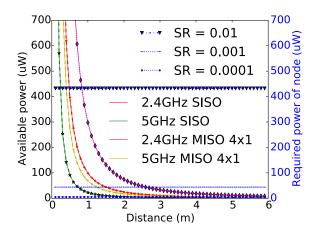


Figure: Available distances based on harvesting and required powers

Introduction	System Analysis	Performance Evaluation	Empirical Validation	Conclusion O	Thank you 0
Dorform	nance Eval	untion			
Perform	iance Evai	uation			

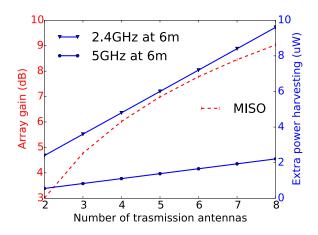


Figure: Harvesting power improvement

Introduction 00	System Analysis 00	Performance Evaluation	Empirical Validation	Conclusion O	Thank you O
Perform	nance Evali	uation			

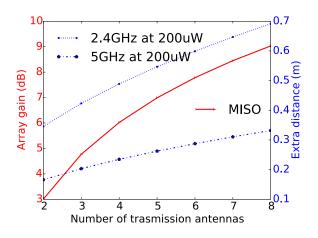


Figure: Distance improvement

Introduction 00	System Analysis	Performance Evaluation	Empirical Validation	Conclusion 0	Thank you 0
Perform	ance Evalı	uation			

• Improvement is a function of the main lobe degree of the beamforming

Table: Improvements on available power and distance

θ_{bf}^{ml}	45°	120°
P ^{imp} _{har}	87.5 %	66.67 %
Dimp	64.64 %	42.26 %

Introduction 00	System Analysis 00	Performance Evaluation	Empirical Validation	Conclusion O	Thank you 0
Perform	nance Evali	uation			

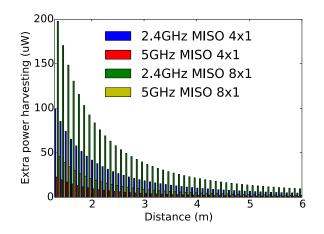


Figure: Extra harvesting power as a function of the distance and the number of antennas

EV. of Energy-Neutral Operation on WD. by MISO Beamforming of IEEE 802.11ac W.-C. Shih, P. H. Chou, W.-T. Chen 12 / 20

Introduction	System Analysis	Performance Evaluation	Empirical Validation	Conclusion	Thank you
00	00		●00000	O	0
Experin	nent Setup				

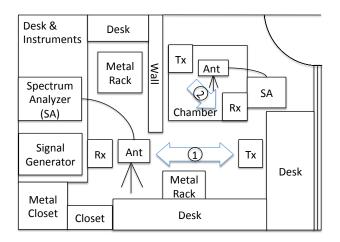


Figure: Floor map for the experiments

Introduction 00	System Analysis 00	Performance Evaluation	Empirical Validation	Conclusion O	Thank you 0
Experim	nent Setup				

Figure: Place 1

EV. of Energy-Neutral Operation on WD. by MISO Beamforming of IEEE 802.11ac W.-C. Shih, P. H. Chou, W.-T. Chen 14 / 20

Introduction 00	System Analysis 00	Performance Evaluation	Empirical Validation	Conclusion O	Thank you 0
Experim	nent Setup				

EV. of Energy-Neutral Operation on WD. by MISO Beamforming of IEEE 802.11ac W.-C. Shih, P. H. Chou, W.-T. Chen 15 / 20

Introduction 00	System Analysis 00	Performance Evaluation	Empirical Validation	Conclusion O	Thank you 0
Scenari	os				

- Case 1 : Moving AE in the Corridor
- Case 2 : Moving Monitoring Antenna in the Corridor
- Case 3 : Moving Monitoring Antenna in the Chamber

Introduction	System Analysis	Performance Evaluation	Empirical Validation	Conclusion	Thank you
00	00		0000€0	O	0

Empirical Experimental Results

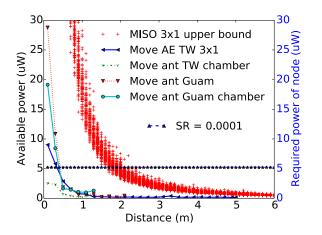


Figure: Empirical experimental results

Introduction 00	System Analysis	Performance Evaluation	Empirical Validation	Conclusion O	Thank you O

Characterisations of Experiments

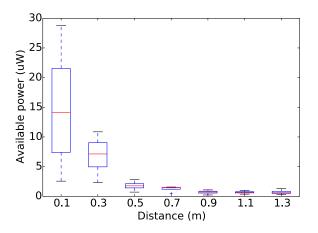


Figure: Characterizations of experiments

Introduction 00	System Analysis 00	Performance Evaluation	Empirical Validation	Conclusion	Thank you 0
Conclus	sion				

- We propose an approach to analysis energy harvesting from an AP and investigate benefits from beamforming
- Emiprical experiments validate the proposed system model
- Future work
 - System model considers Body Area Network (BAN) scenario (ex: channel model or loss)
 - More experiments regarding BAN

Introduction 00	System Analysis 00	Performance Evaluation	Empirical Validation	Conclusion O	Thank you ●
Thank	you for you	ir attention			

Contact

- Wen-Chan Shih (Teddy Shih) Postdoctoral Fellow Intelligent Sensing and Networking Lab (ISL) Institute of Information Science Academia Sinica
- t +886-2-27883799
- e teddyshihau@gmail.com
- w www.sinica.edu.tw

