

Reducing Charge Redistribution Loss for Supercapacitor-Operated Energy Harvesting Wireless Sensor Nodes

> Qianao Ju, Ying Zhang Georgia Institute of Technology {qju3,yzhang}@gatech.edu

- Research Background
- Charge Redistribution of Supercapacitor
- Impact of Charge Redistribution on PW in WSN
- New PM algorithms to Reduce Charge Redistribution Loss
- Conclusions & Future work

Background

Energy Harvester

Energy Storage Device

More than 500,000 life cycles High Power Density High charging/discharging efficiency

Low Energy Density Self discharge Charge Redistribution

Motivation

How to better use SC in harvesting aware WSN?

Previous Literatures:

Empirical SC Model

Leakage Power

Our Research:

Variant Leakage Resistance(VLR) Model

Charge Redistribution Loss

Propose new PM algorithm to reduce Charge Redistribution Loss

Charge Redistribution of SC

VLR----a simplified SC equivalent circuit model

VLR parameters for different size of SC

			VLR Parameters				
Capacitance(F)	Manufacturer	V _{nom} (V)	R ₁ (Ω)	C ₀ (F)	K _v (F/V)	R ₂ (Ω)	C ₀ (F)
10	Maxwell	2.7	0.067	7.278	2.136	139.340	1.914
50	Maxwell	2.7	0.014	35.193	13.773	33.760	11.850

For 10 F SC:
$$R_{3} = \begin{cases} (-2.969 * V_{sc} + 8.043) * 10^{6} & 2.68 \le V_{sc} \le 2.7 \\ (-5.515 * V_{sc} + 14.87) * 10^{6} & 2.662 \le V_{sc} < 2.68 \\ (-5.821 * V_{sc} + 15.66) * 10^{6} & 0 \le V_{sc} < 2.662 \end{cases}$$

For 50 F SC: $R_{3} = \begin{cases} (-1.942 * V_{sc} + 5.291) * 10^{6} & 2.666 \le V_{sc} \le 2.7 \\ (-2.340 * V_{sc} + 6.354) * 10^{6} & 2.625 \le V_{sc} < 2.666 \\ (-3.656 * V_{sc} + 9.566) * 10^{6} & 0 \le V_{sc} < 2.625 \end{cases}$

5

Charge redistribution

• When V_{C_1} and V_{C_2} unbalances with each other, the charges stored in the SC begin to migrate from the high voltage branch to the lower one.

Larger SC tends to have smaller R_2 , which causes higher charge redistribution loss with the same voltage difference

6 Charge redistribution power of different sizes of SC

Long Term SC charge redistribution

Algorithm 1: VLR based SC Simulation

Simulation Configuration

EH-WSN with Supercapacitor

Harvesting Energy Trace and Task Trace

Charge Redistribution Simulation--10F

- Harvesting Profile: fixed phase VS random phase
- Sensor Node: Lazy Scheduling

Charge Redistribution Loss Analysis for 10 F SC

Charge Redistribution Simulation— 50F

Charge Redistribution Loss Analysis for 50 F SC

Conclusion: Random phase leads to more charge redistribution loss.

Alg. 1 Validation

• Validation of the VLR based simulation model:

Using MACCOR Test System to validate the proposed algorithm 1.

Tec

MACCOR Test Platform

Algorithm 1 validation for 10 F Supercap in one hour

	Charge Redist		
	MACCOR Test	Alg.1 Simulation	
Fixed Phase	1.064	1.095	2.83%
Random Phase	3.663	3.458	5.59% Georgia

A snapshot into the simulation—Fixed Phase

Snapshot for the fixed phase harvesting profile

A snapshot into the simulation—Random Phase

Snapshot for the random phase harvesting profile

How to reduce charge redistribution loss?

 If task can be executed right after the charging pulse, charge redistribution loss will be reduced

 We propose a pulse tracking algorithm to minimize charge redistribution loss

Objective: Low computational overhead; effective in tracking harvesting pulses;

Algorithm 2

- HW & SW combined method
- Guaranteed Eager Scheduling
- Put Sensor Node back to sleep as much as it can

Simulations:

Four Power Management strategies are tested under ENO condition:

No Power Management(PM)

Proposed Algorithm 2

Adaptive duty cycling

Hybrid(duty cycling and Alg.2)

Simulation results of no PM and adaptive DC

Simulation results of Alg2 and Hybrid

Power Consumption of Mobile Device

Power Management Algorithms

Device	Power Consumption(mW)
Mica2 Sensor Board	2.5
Atmega 128L(active)	24
CC2420(RX at 0 dbm mode)	63
MICA2 EEPROM(write)	61
Proximity(TDA0161)	420
Flow control(FCS-GL1)	1250

Conclusion

 We propose VLR-based SC simulator to analyze charge redistribution loss.

- We demonstrate that charge redistribution loss can be accumulated to be considerably high.
- We propose a low overhead, wide applicable phase tracking algorithm to mitigate charge redistribution.

Future work

 What is Charge Redistribution Loss with real harvesting profile

 How Charge Redistribution Loss affect network performance?

What about energy dissipation of SC module?

Acknowledgements

National Science Foundation (Grant CNS-1253390)

 Ruizhi Chai for proving VLR model parameter Hengzhao Yang for inspiring discussion

Thank you!

Qianao Ju School of Electrical and Computer Engineering Georgia Institute of Technology qju3@gatech.edu

