A Power Manager with Balanced Quality of Service for Energy-Harvesting Wireless Sensor Nodes

Le Trong Nhan, Alain Pegatoquet, Olivier Berder and Olivier Sentiys
trong-nhan.le@irisa.fr
Toward Connected Objects...

Connected objects are expected to 50 billions by 2020 *(Cisco Systems 2014)*

Energy consumption for a huge number of connected objects?

Autonomous designs with battery independency?
Wireless Sensor Networks (WSNs)

- WSN node
- Wireless link
- Wire link

- Environment Monitoring
- Health Monitoring
- Structure Monitoring
Energy Harvesting (EH): a new paradigm for Power Manager (PM):
- The objective is no more to minimize the consumed energy as battery-powered WSN
- But rather to satisfy Energy Neutral Operation (ENO) condition [KAN2007]
 \[\text{consumed energy} = \text{harvested energy} \]

Power Manager Challenges

• How to control energy consumption?
 – Adapt the wake-up interval (T_{WI})
 – Adapt transmit power
 – Dynamic Voltage and Frequency Scaling (DVFS)

• Consumed energy model:
 – Depend on scenarios or functional modes

• Harvested energy model:
 – Different energy sources: solar, wind, thermal...
 – Real-time monitoring

• Which kind of energy storage?

 ![Diagram of energy storage options]

 500 recharge cycles
 - Difficult to estimate the state of charge
 - Low leakage current

 ![CapXX logo]
 ![Cymbet logo]
 - **500 000 recharge cycles**
 - Easy to estimate the state of charge
 - High leakage current

http://www.cymbet.com
http://cap-xx.com
Related Work: KAN-PM \cite{KAN2007}

- Designed for \textbf{solar-powered} WSN with \textbf{rechargeable batteries}
- Adaptations are based on \textbf{prediction of harvested energy}:
 - Energy consumption is a constant
 - \textbf{State of Charge (SoC)} is not considered
- Time domain is divided in fixed slots (30 minutes)

- \textbf{Low response} to the change of harvested energy
- \textbf{Battery failure can occur} (WSN is shutdown!!!)
- \textbf{High performance} when harvested energy is available
- \textbf{Low performance} when there is no harvested energy

Related Work: CL-PM [CAS2012]

- Adaptations are based on **current harvested energy** and **State of Charge (SoC)** of the battery:
 - Harvested energy model is based on a luminance sensor
 - Consumed energy model is based on a Look Up Table (LUT)
- Dynamic adaptation periods
- **Fast response** to the change of harvested energy
- **Battery failure** is avoided in CL-PM
- **High performance** when harvested energy is available
- **Low performance** when there is no harvested energy

Contributions

• Global power manager for supercapacitor-based energy harvesting WSN node:
 – Balance performance while satisfying ENO
 – Energy sources independence: solar, wind, thermal...
 – Precise energy model: consumed, harvested and SoC models
 – Low complexity, memory footprint

• Periodic energy sources:
 – Light energy in an office
 – Energy Interval (T_{EI})
 – Non-Energy Interval (T_{NEI})
1. Multiple Energy Sources Converter (MESC)
 1. Hardware Architecture
 2. Energy Monitor
 3. Energy Predictor

2. Power Manager with Balanced Quality of Service (BQS-PM)
 1. Positive Energy Power Manager (PE-PM)
 2. Negative Energy Power Manager (NE-PM)

3. Simulations and Comparisons

4. Conclusions
1. Multiple Energy Sources Converter (MESC)
 1. Hardware Architecture
 2. Energy Monitor
 3. Energy Predictor

2. Power Manager with Balanced Quality of Service (BQS-PM)
 1. Positive Energy Power Manager (PE-PM)
 2. Negative Energy Power Manager (NE-PM)

3. Simulations and Comparisons

4. Conclusions
Multiple Energy Sources Converter (MESC)

- Support different sources: solar, thermal, wind
- Supercapacitor-based energy storage
- Optimized energy flow
- DC/DC converter efficiency: $\eta = 0.85$
- Optimized sizing **OutCap** and **StoreCap**
Multiple Energy Sources Converter (MESC)

- Support different sources: solar, thermal, wind
- Supercapacitor-based energy storage
- Optimized energy flow
- DC/DC converter efficiency: $\eta = 0.85$
- Optimized sizing OutCap and StoreCap

Software-based Energy Monitor

- Provide energy profiles
 - Current energy in the StoreCap (\tilde{e}_S)
 - Leakage energy of the whole system (\tilde{e}_{Leak})
 - Consumed energy of the WSN node (\tilde{e}_C)
 - Harvested energy from harvesters (\tilde{e}_H)

Look Up Table

<table>
<thead>
<tr>
<th>Activity</th>
<th>Energy (E_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation Before Transmission</td>
<td>E_{CBT} 9.7µJ</td>
</tr>
<tr>
<td>Transmit/Receive wake-up beacon</td>
<td>E_{WUB} 51µJ</td>
</tr>
<tr>
<td>Data Transmission</td>
<td>E_{DT} 80µJ</td>
</tr>
<tr>
<td>Data Reception</td>
<td>E_{DR} 100µJ</td>
</tr>
<tr>
<td>Clear Channel Assessment</td>
<td>E_{CCA} 18µJ</td>
</tr>
</tbody>
</table>

Adaptive Filter-based Energy Predictor

- Low complexity and memory footprint
- Acceptable average error (less than 15%)
- Independent of energy sources: outdoor solar, indoor light, wind

\[\hat{e}_H(n+1) \]: Predicted harvested energy in slot \(n+1 \)
\[err(n+1) \]: Prediction error
\[w(n) \]: Filter coefficients

Low-complexity filter order \(p = 1 \)

1. Multiple Energy Sources Converter (MESC)
 1. Hardware Architecture
 2. Energy Monitor
 3. Energy Predictor

2. Power Manager with Balanced Quality of Service (BQS-PM)
 1. Positive Energy Power Manager (PE-PM)
 2. Negative Energy Power Manager (NE-PM)

3. Simulations and Comparisons
4. Conclusions
Power Manager with Balanced Quality of Service (BQS-PM)

Energy Monitor

- \(V_S(n) \)

Positive Energy Power Manager

\[
\tilde{P}_H(n) > \varepsilon \\
\tilde{e}_S(n+1)
\]

Negative Energy Power Manager

\[
\tilde{P}_H(n) \leq \varepsilon \\
\tilde{e}_S(n+1)
\]

Adaptive Filter

- \(\tilde{P}_H(n) \)
- \(\tilde{P}_H(n+1) \)
- \(\tilde{e}_S(n+1) \)
- \(\tilde{e}_{Active}(n+1) \)

Look Up Table

<table>
<thead>
<tr>
<th>Activity</th>
<th>Energy (µJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit/Receive wake-up beacon</td>
<td>(E_{WUB}) 51µJ</td>
</tr>
<tr>
<td>Data Transmission</td>
<td>(E_{DT}) 80µJ</td>
</tr>
<tr>
<td>Data Reception</td>
<td>(E_{DR}) 100µJ</td>
</tr>
<tr>
<td>Clear Channel Assessment</td>
<td>(E_{CCA}) 18µJ</td>
</tr>
<tr>
<td>Sensing</td>
<td>(E_{SEN}) 27µJ</td>
</tr>
<tr>
<td>Transmit/Receive Acknowledgment</td>
<td>(E_{ACK}) 51µJ</td>
</tr>
</tbody>
</table>

EWMA(*)

- \(EWMA(*) \): Exponentially Weighted Moving Average

ZEI (#)

- \(ZEI \): Zero Energy Interval [CAS2012]

Time

- \(T_{WI}(n+1) \)
- \(T_{EI} \)
- \(T_{NEI} \)

\[
TS(n-1) = kTWI(n-1) \\
TS(n) = kTWI(n)
\]
Positive Energy Power Manager (PE-PM)

• Energy constraint to respect ENO:

\[
\frac{\hat{e}_H(n+1)}{1 + \varphi} = \frac{1}{\eta} \hat{e}_C(n+1) + P_{\text{Leak}} T_S(n+1)
\]

\[
\varphi = \frac{T_{\text{NEI}}}{T_{\text{EI}}}
\]

\[
\frac{\hat{e}_H(n+1)}{1 + \varphi} = \frac{1}{\eta} [\hat{e}_{\text{Active}}(n+1) + P_{\text{Sleep}} T_S(n+1)] + P_{\text{Leak}} T_S(n+1)
\]

• Next wake-up interval:

\[
T_{\text{WI}}(n+1) = \frac{(1 + \varphi) \hat{e}_{\text{Active}}(n+1)/k}{\eta \hat{P}_H(n+1) - (1 + \varphi)(\eta P_{\text{Leak}} + P_{\text{Sleep}})}
\]
Negative Energy Power Manager (NE-PM)

• Remaining time of non-energy interval:

\[R(n+1) = R(n) - T_S(n) = R(n) - kT_{WI}(n) \]

• Available energy for waking-up:

\[E_R(n+1) = \frac{1}{2} C_S \left[V_S^2(n) - V_0^2 \right] - (P_{Sleep} + \eta P_{Leak})R(n+1) \]

• Next wake-up interval:

\[T_{WI}(n+1) = \frac{R(n+1)\hat{e}_{Active}(n+1)}{kE_R(n+1)} \]
1. Multiple Energy Sources Converter (MESC)
 1. Hardware Architecture
 2. Energy Monitor
 3. Energy Predictor

2. Power Manager with Balanced Quality of Service (BQS-PM)
 1. Positive Energy Power Manager (PE-PM)
 2. Negative Energy Power Manager (NE-PM)

3. Simulations and Comparisons

4. Conclusions
Evaluation metrics

- $W_{EI}(s)$: Average wake-up interval during T_{EI}
- $W_{NEI}(s)$: Average wake-up interval during T_{NEI}
- $W_C(s)$: Average wake-up interval during T_C
- Mem(words): Memory footprint
- Mul: Number of multiplications
- B_f(minute): Battery failure duration
- Gap: the difference of W_{EI} and W_{NEI}

\[
\text{Gap} = \left| \frac{W_{EI} - W_C}{W_C} \right| + \left| \frac{W_{NEI} - W_C}{W_C} \right|
\]

Single-hop EH-WSN

- $C_S = 1.8F$, $V_{Min} = 1.8V$, $V_{Max} = 5.2V$
Receiver Initiated Protocol (RICER) [EYL2004]

\[T_b = 50\text{ms} \]

Wake-up beacon (WUB)

Receiver

Idle listening

Clear Channel Assessment (CCA)

Transmitter

\[T_{idle} = 52\text{ms} \]

– After receiving a beacon packet (WUB), the transmitter forwards data package (DT) after Clear Channel Assessment (CCA)

BQS-PM Simulation Results

- Wake-up interval presents an inverse shape according to the harvested power
- ENO condition is satisfied after a day (24 hours)
- There is no battery failure or overflow
KAN-PM Simulation Results

- Low response to the change of harvested energy
- Does not well satisfy ENO condition
- Low T_{WI} during T_{EI} but very high T_{WI} during T_{NEI}
CL-PM Simulation Results

- Fast response to the change of harvested energy
- Satisfies ENO condition, without battery failure
- Low T_{WI} during T_{EI} but very high T_{WI} during T_{NEI}
PEO-PM, KAN-PM and CL-PM Comparisons

<table>
<thead>
<tr>
<th></th>
<th>BQS-PM (s)</th>
<th>KAN-PM (s)</th>
<th>Gain (%)</th>
<th>CL-PM (s)</th>
<th>Gain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_{EI}</td>
<td>21.1</td>
<td>11.1</td>
<td>-47.4</td>
<td>10.4</td>
<td>-50.7</td>
</tr>
<tr>
<td>W_{NEI}</td>
<td>18.9</td>
<td>125.2</td>
<td>84.9</td>
<td>111.6</td>
<td>83.1</td>
</tr>
<tr>
<td>W_{C}</td>
<td>19.9</td>
<td>111.6</td>
<td>3.13</td>
<td>19.6</td>
<td>-0.26</td>
</tr>
<tr>
<td>Gap</td>
<td>0.2</td>
<td>5.6</td>
<td>98.0</td>
<td>5.13</td>
<td>97.9</td>
</tr>
<tr>
<td>Mem (words)</td>
<td>11</td>
<td>48</td>
<td>77.08</td>
<td>10</td>
<td>-10.00</td>
</tr>
<tr>
<td>Mul</td>
<td>16</td>
<td>28</td>
<td>42.86</td>
<td>9</td>
<td>-77.78</td>
</tr>
<tr>
<td>B_f (min)</td>
<td>0</td>
<td>18</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

- While balancing wake-up interval, W_{NEI} is significantly improved.
- Difference of wake-up interval between T_{EI} and T_{NEI} is removed.
- Low complexity, low memory footprint and no battery failure.
Conclusions

• Power manager with Balanced Quality of Service (BQS-PM):
 – Adapt the node to **ENO, without battery failure**
 – **Improve 85%** the QoS when there is no more harvested energy

• Independence of periodic energy sources

• Low memory footprint, low complexity
A Power Manager with Balanced Quality of Service for Energy-Harvesting Wireless Sensor Nodes